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Basic Study Design
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Phases of Biomarker Discovery & Validation

Pepe et al. JNCI 2001
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100% sensitivity & specificity

in classifying cases vs. controls

=

|dentification of biomarkers for cases



Three Principles of Case-Control Design
(Wacholder et al. Am J Epidemiol 1992)

1. A common study base for cases and controls
2. Controlling for confounding effects

3. Comparable accuracy and precision in exposure
measurements



1. Common Study Base

O Define a common study base (who, where,

when) and sample both cases and controls
from it

Cases and controls from different institutions

Cases from a past study, controls from an
ongoing study

Disease is not the only difference between

> cases and controls




2. Controlling for confounding

O Balance age and race between cases and
controls (or adjust for in the analysis)

Study base = 30-75 women in Montreal in 2003
Breast cancer cases = Tend to be older
Controls = Younger

j> Markers for age, not cancer, will distinguish
cases and controls



3. Comparable measurement errors

O Unify the sample collection, processing, storage,
and assay methods for cases and controls.

Balance the use of machines, technicians, chips,
and wells between cases and controls.

If not,

True marker-disease relation is distorted

—




Use of multiple markers

in classifying disease classes
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\VETCIA

Likely overlap of intensity
distributions of a single Contro) Cancer
marker between cases
and controls

Need to combine
information from
multiple markers!

Marker B




Building Classifiers

Classical Discriminant Analysis
Logistic Regression

CART

Neural Network

Support Vector Machine
Boosting



ancer vs. control classification

100%
|

.
-
’
7
,
o ’
/ N 7
1 0 Se
1 N/ =
[N
' N
U 1
U 1
i 1

40% 60% 80%
| | |

20%
|

% of correctly classified

- - -% of correctly classified

0%

0 10 20 30 40

Number of markers in the classifier



The design of the EVMS biomarker analysis
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How to assess over-fitting in the training set 7

= (Cross-validation of the training data

Use 90% to form the marker set & 10% to test
Repeat 10 times and summarize

N— g

——
Build a classifier with 90% and test in 10% ——




Logistic regression with forward variable selection
with various stopping p-values
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Use of the test set
Enable unbiased assessment of classification erro

If no modification/selection of the classifier-
construction method is made with the test set

e.g., Construct 2 classifiers with the training set and
report the one with the better test-set performance

(2 feature selection methods, stepwise stopping, efc



Boosting for supervised and partially

supervised learning

Method for classifier building and

its modification for partially-incorrect class labels



Heterogeneity / subtypes within cancer
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Real AdaBoost Algorithm (y' =1 vs.y =-1)

Friedman, Hastie, Tibshirani (Annals of Statistics, 2000)

1. Letw,=1/N fori=1,2,...,N
2. Repeatform=1,2,..., M

» Fit a classifier with weights {w} to get
Pm(X) = Pr(Y'=1[x, {w;})

« | Setw,=w,x exp{— 0.5y x logit p,,(x)}

* Renormalize {w} such that 2, w,= 1

3. The final classifier:
nu(x) = logit p,(x) + logit p,(x) + ... + logit p,,(x) > c



Real AdaBoost with Logistic Regression
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Boosting algorithm
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Performance of the boosting classifier
(15t stage: Abnormal vs. Normal)

Correct classification

Training dataset

Cancer/BPH  245/245 (100%)

Normal

81/ 81 (100%)

Test dataset
44/45 (97.8%)
15/15 (100%)




Why does this work?

AdaBoost = “Best off-the-shelf classifier”

(Brieman)
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(Olm,ﬂm,X(m)) — argmin ZLj(y;k?n(9¢ _1)(X9X-(m_1)))

(9=(a.5).X) %% %
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Boosting = Stage-wise minimization of a loss function L’ '
given previously selected biomarkers X(-7)
and their parameters ¢, )

Classifier changes slightly at each stage = Slow learning
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Large margin classifiers

Aargin; = y; 7(x;)
> 0if 77(x;) is correct
< 01if (x;) is wrong

- Higher confidence in classification

. Increased generalizability



Large margin classifiers
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Discrete AdaBoost Algorithm (y' =1 vs.y =-1)

. Letw,;=1/N fori=1,2,...,N
. Repeatform=1,2,..., M

« Fit a base classifier f (x) € {-1,1} (e.g., a decision tree) with
weights {w;}

« ERR, =2 w; 1{y; =1, (x)}
« C, =log{(1-ERR,)ERR,}
« Setw,=w xexp{—-05C_,y xf (x)}

« Renormalize {w;} such that >, w,= 1

. The final classifier: C,f;(x) + C,f,(x) + ... + Cyfy(X) > C






It worked well for Cancer/BPH vs. Normal

But ...
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Performance of the boosting classifier
(2"d stage: Cancer vs. BPH)

Correct classification

Training dataset
160/167 (95.8%)
70/ 78 (89.7%)

Test dataset
28/30 (93.3%)
7115 (46.7%)




European Prostate Cancer Detection Study
Protocol: Biopsy 1,051 men with PSA 4-10 ng/ml

If negative, take another biopsy 6 weeks later

If negative again, take another 8 weeks later

Cancer detection: 231 were detected by Biopsy 1 119 cance
83 were detected by Biopsy 2 missed b
" Y =P Biopsy 1

36 were detected by Biopsy 3

. A single biopsy can miss > 1/3 of cancers in PSA 4-10 patients



f

Cancer label = 100% correct

Non-cancer label < 100% correct

&

= Partially Supervised Learning

How can we “learn” from potentially

partially mislabeled data?




« If correct labels y.'s are available:

&, ,X(m) =argmin ) € 2 In 1_|_e—yf(a+ﬂXl-)
P> i

weights - log-likelihood

High (low) weights for incorrectly (correctly) classified observation

Results of (m-1)t classification = Who should “speak
louder” at mth stage



* |If correct labels y;'s are NOT available:

= We cannot determine whether the (m-1)" classification
was correct or not

— Unclear who should speak louder at the mth stage

PROPOSAL

Let the observations that are likely to be misclassified

at (m-1) stage speak louder at mt" stage
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« If correct labels y.'s are available:
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Design of the

N=81 N=245 simulation study

Study (1): N=49 (>50% of Normal)
Study (2): N=98 (>100% of Normal)
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Questions in the simulation study

Q1: Can we recover the cancer/BPH samples
that were incorrectly labeled as “normal™?

Q2: How do the classifiers constructed from
the incorrectly labeled training dataset
perform when tested against the test
dataset?



Learning methods compared

Forward-selection logistic regression with
BIC as the model-selection criteria

Real AdaBoost with logistic regression
(stopped at m=100" iterations)

EM-Boost with P, = 0.1, 0.3, 0.5
(stopped at m=100" iterations)



Study (1): Training Dataset Results

LEARNING METHOD AREA UNDER THE ROC SENSITIVITY AT

CURVE (P-VALUE) 95% SPECIFICITY
Forward-selection 0.9584 (0.0393) 69.4
BIC
Real AdaBoost 0.9741 (Reference) 79.0
EM-Boost
Py = 0.1 0.9926 (0.0024) 97.5
Py=0.3 0.9932 (0.0040) 97.5

Py=0.9 0.9919 (0.0068) 96.3




Study (1): Test Dataset Results

LEARNING METHOD AREA UNDER THE ROC PREDICTION
CURVE (N = 60) ERROR
(N = 60)
Forward-selection 0.807 19 (31.7%)
BIC
Real AdaBoost 0.816 15 (25.0%)
EM-Boost
Py =0.1 0.925 6 (10.0%)
Py=0.3 0.919 7 (11.7%)

Py = 0.5 0.936 5( 8.3%)




Study (2): Training Dataset Results

LEARNING METHOD AREA UNDER THE ROC SENSITIVITY AT

CURVE (P-VALUE) 95% SPECIFICITY
Forward-selection 0.9064 (0.0018) 20.6
BIC
Real AdaBoost 0.9462 (Reference) 28.0
EM-Boost
Py = 0.1 0.9623 (0.0358) 75.3
Py=0.3 0.9740 (0.0013) 80.2

Po=0.5 0.9812 (0.0001) 82.7




Study (2): Test Dataset Results

LEARNING METHOD  AREA UNDER THE ROC
CURVE (N = 60)

PREDICTION

ERROR
(N = 60)

28 (46.7%)

26 (43.3%)

Forward-selection 0.671
BIC
Real AdaBoost 0.790
EM-Boost
Py, =0.1 0.880
Py =0.3 0.913
Ps=0.5 0.920

12 (20.0%)
8 (13.3%)
11 (18.3%)




Summary

Pre-analysis processing is crucial for a proper analysis

Avoiding overfitting is the key in classifier building with
multiple biomarkers

In biomedical applications, imperfect class labels are
common

EM-Boost modifies the boosting algorithm to
accommodate potential mislabeling: allows “learning”
In partially supervised settings









